The Best Thermostats...

Here's some good repair guides for your Tercel :) Look here for help first!
Post Reply
takza
Highest Ranking Member
Posts: 4414
Joined: Fri Apr 02, 2004 4:28 am
Location: Tibetan plateau

Post by takza »

THREE BRANDS?

Robert Shaw

<a href='http://www.cooperstandard.com/us/en/Aft ... mostat.asp' target='_blank'>http://www.cooperstandard.com/us/en/Aft ... tat.asp</a>

Beck Arnley.....NAPA

????????????/

Stant

http://www.stant.com/

---------------------------------


From a list somewhere....


"RobertShaw stats .....They seem to operate reliably for many years.

The Stant thermostats and those made by Stant fail way too often, open, closed, or just fall apart for no reason. Most of the Stant T-stats I have used have failed before a year was out. I went thru 3 of them on one vehicle in a single year before I changed to the RS type and it has been in there over three years with no problems. I just change fluids. My other vehicles have them too.

I have a cousin that runs an independent garage and the RS units are all he will use due to callbacks and warranty claims. He was the one that started me using them. Independent garages can't afford to alienate a customer just because a 90 day warranty has expired like the big chain shops. Some RS thermostats carry a lifetime warranty. A lot of the guys around here know about the RobertShaw stats.

I have never used the Beck Arnley t-stats tho. They have a fail safe model that has a mechanism that supposedly keeps them from failing closed which can be a disaster. Open is bad enuf.

BeckArnley stats are about as hard to find as the RobertShaw stats.

Everybody and their brother has Stants or rebranded/boxed cheapo Stants. Most people don't know there is a difference and would rather pay $3 for a Stant than $5-10 for a RS or BA.

I find the RS's at Pep Boys auto and Summit Racing. They are supposed to flow more when fully open and I believe they are better at regulating the temperature."


<a href='http://www.radiatorinfo.com/radiator_au ... adtip.html' target='_blank'>http://www.radiatorinfo.com/radiator_au ... ip.html</a>

"Overheating Causes and Cures

Internal combustion engines run on heat. Chemical energy in the fuel is transformed into thermal energy when the fuel burns, which produces mechanical energy to push the pistons, spin the crankshaft and drive the vehicle down the road.

As efficient as today’s engines are, they still waste a lot of the heat energy they produce. The average gasoline engine is only about 22 to 28 percent efficient. That means over two-thirds of the heat produced by each gallon of fuel either goes out the tailpipe or is soaked up by the engine itself. Diesels squeeze a little more bang out of each buck’s worth of fuel with efficiency ratings of 32 to 38 percent, but even that leaves a lot of waste heat that must be managed and carried away by the cooling system.

Ironically, the hotter an engine runs the more efficient it becomes. But there’s a limit because aluminum pistons and heads can only get so hot before they start to soften and melt. The same goes for cast iron. Engineers have been tinkering with exotic ceramic materials and metallic-ceramic alloys in an attempt to build high-temperature, super efficient engines. They’ve realized some significant gains but ceramics are still too expensive for everyday applications.

How Hot Is Too Hot?

Most engines today are designed to operate within a "normal" temperature range of about 195 to 220 degrees F. A relatively constant operating temperature is absolutely essential for proper emissions control, good fuel economy and performance.

A 50/50 mixture of water and ethylene glycol antifreeze in the cooling system will boil at 225 degrees if the cap is open. But as long as the system is sealed and holds pressure, a radiator cap rated at 15 psi will increase the boiling temperature of a 50/50 coolant blend up to 265 degrees. If the concentration of antifreeze to water is upped to 70/30 (the maximum recommended), the boiling temperature under 15 psi of pressure goes up to 276 degrees.

So does this mean a cooling system with a maximum concentration of antifreeze in the coolant (70 percent) can run as hot as 276 degrees without boiling over? Theoretically yes - but realistically no. The clearances in most of today’s engines are much, much closer than those in engines built in the 1970s and early 1980s. Piston-to-cylinder clearances are much tighter to reduce blowby for lower emissions. Valve stem-to-guide clearances also are closer to reduce oil consumption and emissions, too. Plus, many engines today have aluminum heads with overhead cams. Such engines don’t handle higher than normal temperatures well, and are very vulnerable to heat damage if the engine gets too hot.

Anytime temperatures climb beyond the normal range, the engine is running in the danger zone.

Consequences of Overheating

If the engine overheats, the first thing that will happen is a gasoline engine will start to detonate. The engine will ping and start to lose power under load as the combination of heat and pressure exceed the octane rating of the fuel. If the detonation problem persists, the hammer-like blows may damage the rings, pistons or rod bearings.

Overheating can also cause preignition. Hot spots develop inside the combustion chamber that become a source of ignition for the fuel. The erratic combustion can cause detonation as well as engine run-on in older vehicles with carburetors. Hot spots can also be very damaging and burn holes right through the top of pistons.

Another consequence of overheating may be a blown head gasket. Heat makes aluminum swell almost three times faster than cast iron. The resulting stress can distort the head and make it swell in areas that are hottest, like those between exhaust valves in adjoining cylinders, and areas that have restricted coolant flow like the narrow area that separates the cylinders. The typical aluminum head swells most in the middle, which can crush the head gasket if the head gets hot enough. This will cause a loss of torque in the gasket allowing coolant and combustion leaks to occur when the head cools.

Overheating is also a common cause of OHC seizure and breakage.

Wait, there’s more. If the coolant gets hot enough to boil, it may cause old hoses or an age-weakened radiator to burst under the increased pressure. Pistons may swell up and scuff or seize in their bores, causing serious engine damage. Exhaust valve stems may stick or scuff in their guides. This, in turn, may cause valves to hang open which can damage pistons, valves and other valvetrain components. And if coolant gets into the crankcase, you can kiss the bearings and bottom end of the engine goodbye.

A HOT warning lamp should never be ignored. Though a few high tech cars like Cadillacs with the Northstar engine can disable cylinders to "air-cool" the engine and keep it running at reduced power in the event of coolant loss, most engines will suffer serious damage if they overheat. So advise your customers to stop driving at the first sign of overheating. Turn the engine off, let it cool down and try to find and fix the cause before risking further travel.

Causes of Overheating

Overheating can be caused by anything that decreases the cooling system’s ability to absorb, transport and dissipate heat, such as a low coolant level, loss of coolant (through internal or external leaks), poor heat conductivity inside the engine because of accumulated deposits in the water jackets, a defective thermostat that doesn’t open, poor airflow through the radiator, a slipping fan clutch, an inoperative electric cooling fan, a collapsed lower radiator hose, an eroded or loose water pump impeller or even a defective radiator cap.
One of nature’s basic laws says that heat always flows from an area of higher temperature to an area of lesser temperature, never the other way around. The only way to cool hot metal, therefore, is to keep it in constant contact with a cooler liquid. And the only way to do that is to keep the coolant in constant circulation. As soon as the circulation stops, either because of a problem with the water pump, thermostat or loss of coolant, temperatures begin to rise and the engine starts to overheat.

The coolant also has to get rid of the heat it soaks up while passing through the block and head(s). So the radiator must be capable of doing its job, which requires the help of an efficient cooling fan at slow speeds.
Finally, the thermostat must be doing its job to keep the engine’s average temperature within the normal range. If the thermostat fails to open, it will effectively block the flow of coolant and the engine will overheat.

What To Check

* Thermostat - Severe overheating can often damage a good thermostat. If the engine has overheated because of another problem, the thermostat should be tested or replaced before the engine is returned to service.
One way to check the thermostat is to start the engine and feel the upper radiator hose (or use an infrared noncontact thermometer to read its temperature). The hose should not feel uncomfortably hot until the engine has warmed-up and the thermostat opens. If the hose does not get hot, it means the thermostat is not opening.
Another way to test the thermostat is to remove it and dip it into a pan of boiling water (it should open). The exact opening temperature can be checked by using a thermometer.
If the thermostat needs to be replaced, install one with the same temperature rating as the original. Most cars and light trucks since 1971 require thermostats with 192- or 195-degree ratings. Using a cooler thermostat (160 or 180) in an attempt to "cure" a tendency to overheat can increase fuel and oil consumption, ring wear and emissions. On newer vehicles with computerized engine controls, the wrong thermostat can prevent the computer system from going into closed loop resulting in major performance and emission problems if the engine fails to reach its normal operating temperature.

* Cooling system leaks - Loss of coolant because of a leak is probably the most common cause of overheating. Possible leak points include hoses, the radiator, heater core, water pump, thermostat housing, head gasket, freeze plugs, automatic transmission oil cooler, cylinder head(s) and block.
Make a careful visual inspection of the entire cooling system, and then pressure test the cooling system and radiator cap. A pressure test will reveal internal leaks such as seepage past the head gasket as well as cracks in the head or block. A leak-free system should hold pressure for at least a minute or more.
It’s important to pressure test the radiator cap, too, because a weak cap (or one with too low a pressure rating for the application) will lower the coolant’s boiling point and can allow coolant to escape from the radiator.

* Fan - With mechanical fans, most overheating problems are caused by a faulty fan clutch - though a missing fan shroud can reduce the fan’s cooling effectiveness by as much as 50 percent (depending on the fan’s distance from the radiator), which may be enough to cause the engine to overheat in hot weather or when working hard.
Defective fan clutches are a common and often overlooked cause of overheating. The shear characteristics of the clutch fluid gradually deteriorates over time, with an average loss in drive efficiency of about 200 rpm per year. Eventually slippage reaches the point where effective cooling is no longer possible and overheating results. (On average, the life of a fan clutch is about the same as a water pump. If one needs to be replaced, the other usually does too.)
If the fan clutch shows signs of fluid leakage (oily streaks radiating outward from the hub of the clutch), spins freely with little or no resistance when the engine is off or wobbles when the fan is pushed in or out, it needs to be replaced.
With an electric cooling fan, check to see that the fan cycles on when the engine gets hot and when the air conditioner is on. If the fan fails to come on, check the fan motor wiring connections, relay and temperature sensor. Try jumping the fan directly to the battery. If it runs, the problem is in the wiring, relay or sensor. If it fails to run, the fan motor is bad and needs replaced.

* Water pump - Any wobble in the pump shaft or seepage would call for replacement. In some instances, a pump can cause an engine to overheat if the impeller vanes are badly eroded due to corrosion or if the impeller has come loose from the shaft. The wrong pump may also cause an engine to overheat. Some engines with serpentine drive belts require a special water pump that turns in the opposite direction of those used on the same engine with ordinary V-belts.

* Belts & hoses - Check belt tension and condition. A loose belt that slips may prevent the water pump from circulating coolant fast enough and/or the fan from turning fast for proper cooling.
The condition of the hoses should also be checked. Recommend new hoses if the old ones are over 5 years old.
Sometimes a lower radiator hose will collapse under vacuum at high speed and restrict the flow of coolant from the radiator into the engine. This can happen if the reinforcing spring inside the hose is missing or damaged.

* Radiator - The most common problems radiators fall prey to are clogging (both internal and external) and leaks. Dirt, bugs and debris can block air flow through the core and reduce the radiator’s ability to dissipate heat. Internal corrosion and an accumulation of deposits can likewise inhibit coolant circulation and reduce cooling. A good way to find clogs is to use an infrared thermometer to "scan" the surface of the radiator for cold spots. If clogged, the radiator should be removed for cleaning or be replaced.
Backflushing the cooling system and/or using chemical cleaners can remove rust and hard water scale, but may do little to open up a clogged radiator.
When refilling the cooling system, be sure you get it completely full. Air pockets in the head(s), heater core and below the thermostat can interfere with proper coolant circulation and cooling. If the cooling system has no bleeder valves to vent air, you may have to temporarily loosen a heater hose to get all the air out of the system.

* Excessive exhaust backpressure - A clogged catalytic converter is usually the culprit here, but don’t overlook the possibility of a crushed pipe or a collapsed double wall pipe. Check intake vacuum at idle. If it reads low and continues to drop, inspect the exhaust system.

* Retarded or overadvanced ignition timing (may also contribute to detonation and preignition).

* Overheated incoming air - On older vehicles with a carburetor or throttle body injection, check the operation of the heated air intake system on the air cleaner. If the temperature control valve is stuck so only heated air from around the exhaust manifold is drawn into the air cleaner, it may contribute to detonation and/or overheating. Also check the heat riser valve for manifold heat on older V6 and V8 engines. If stuck shut, it may be overheating the intake manifold.

* Dragging brakes - A caliper that’s sticking or a parking brake that isn’t releasing may be making the engine work too hard.

* Overworking the engine. The cooling systems in many passenger cars today are marginal and have little excess capacity to handle extra heat generated by towing or high speed mountain driving in hot weather."
Give a boy a gun-give a biatch a cell phone-and pretty soon you almost got yourself a police state.

Orwell said: War is peace! Freedom is slavery. Ignorance is strength...

Image
Gasoline Fumes
Highest Ranking Member
Posts: 692
Joined: Thu Apr 01, 2004 11:54 pm
Location: New York State

Post by Gasoline Fumes »

To me, quality = made in Japan. I always get thermostats from the dealer when dealing with a Japanese car. Most parts from auto parts stores seem to have a one year lifespan versus 10+ years from the dealer parts. The exception would be something like my parents' 1983 GMC, the oem parts are probably just as bad (or even made at the same place) as the aftermarket.
takza
Highest Ranking Member
Posts: 4414
Joined: Fri Apr 02, 2004 4:28 am
Location: Tibetan plateau

Post by takza »

I was considering trying out a 192F thermostat that should help improve MPG some, but found that the elect fan starts running at 194F and shuts off at 181F....so using a 192F thermostat would cause the fan to start going and never shut off while the car is running...since the coolant would never get below 181F.

Option would be to use an aftermarket RV type thermostat to control the fan and set it to run somewhere above 192F.

Forgot about the OEM thermostat....have a Stant in in there now.
Give a boy a gun-give a biatch a cell phone-and pretty soon you almost got yourself a police state.

Orwell said: War is peace! Freedom is slavery. Ignorance is strength...

Image
Mac
Highest Ranking Member
Posts: 809
Joined: Wed Apr 06, 2005 12:02 pm
Location: surrey, BC, canada

Post by Mac »

I got a OEM t-stat for my tercel and i noticed fatser warm ups and more consistant normal operating temp (it used to go up 3/4 the way to red, now it will only go slightly past the middle) the only reason it goes past middle at all is because my temp switch that tells the fan when to come on is old and comes on late.
Tercel 4WD "POWER WAGOON" with 4A-C
aka: "no powa steering tercel, oh oh oh!"
mods: ignition at 10 DBTDC and 90 octane gas.
takza
Highest Ranking Member
Posts: 4414
Joined: Fri Apr 02, 2004 4:28 am
Location: Tibetan plateau

Post by takza »

I bought a Beck-Arnley 192F thermostat...made in Germany...going to use it with a mechanical-adjustable fan thermostat.

Thermo has no temp number stamped on it though...
Give a boy a gun-give a biatch a cell phone-and pretty soon you almost got yourself a police state.

Orwell said: War is peace! Freedom is slavery. Ignorance is strength...

Image
Post Reply